

Case History – Alloway Creek Site, NJ (USA)

- Component of the PSEG Estuary Enhancement Program (EEP)
- Associated with NJPDES permit issued for Salem Generating Station
- Required restoration/enhancement/preservation of 20,000 acres of coastal marsh and uplands along Delaware Bay
- Includes restoration of 5,000 acres of *Phragmites* dominated marsh at four locations (NJ and DE)

What characteristics make Phragmites so invasive?

- Invasive haplotype (Type M) is resistant to native insects/diseases
- Produces copious amounts of air-born seed (variable viability)
- Uses successful dispersal mechanism <u>viable rhizomes fragments</u>
- Thrives on disturbance, opportunistic to colonize bare ground
- Fast-growing: <u>lateral spread</u> by above ground "runners"
- Habitat generalist <u>can tolerate moderate salinity</u>
- Demonstrates <u>alleleopathy</u> (gallic acid)
- Has long photosynthetic period
- Alters soil and habitat conditions to better suit it's own survival and expansion – sediment accretion and marsh surface leveling

Examples of Invasive Plant Control Methods

- Herbicide Application
- Prescribed Burning
- Mowing
- Compressing or Rollling
- Hand-pulling or Mechanical Excavation
- Flooding
- Tarping
- Biological Controls

Examples of Invasive Plant Control Methods

- Herbicide Application
- Prescribed Burning
- Mowing
- Compressing or Rollling
- Hand-pulling or Mechanical Excavation
- Flooding
- Tarping
- Biological Controls

Case History – Alloway Creek Site, NJ (USA)

- Success Criteria: < 5% coverage by Phragmites
- Initial Phragmites Treatments w/Glyphosate-based Herbicide in 1996
- Prescribed Burn in Winter of 1997
- Significant Reduction 1997 1998
- Significant Regrowth in 1999
- Adaptive Management Evaluations 1999 2001
- Continuing Adaptive Management Evaluations of Glyphosate-based and Imazapyr-based Herbicides (2002)
 - Present)

Aerial Herbicide Treatment

1996 Herbicide Treatments

Ground Herbicide Treatment

1999 Regrowth of *Phragmites* Triggered Adaptive Management Process

- Management Alternatives Considered:
 - Continued Herbicide Treatments
 - Mowing at Various Cycles
 - Micro-topographic Modifications
 - Biological Control (Goats)
 - Combination Treatments
 - No Additional Treatments (Reference)
- >100 Test Areas Established

Microtopography

Mowing

Goat Grazing

Physical Treatments	Symbol
Spring Mowing	SPMOW
Summer Mowing	SUMOW
Multiple Mowing	MLMOW
Summer Microtopography	SUMTM
Spring Microtopography	SPMTM
Fall Microtopography	FLMTM
Chemical Treatments	Symbol
Summer Glyphosate	SUGLY
Fall Glyphosate	FLGLY

Duration / Frequency of Treatments

One Year / Single Treatments

One Year / Multiple Treatments

Two Consecutive Year / Single Treatments

Two consecutive Year / Multiple Treatments

Three Consecutive Year / Single Treatments

Vegetation Cover Data Analysis

- Aerial photography available for all Test Areas from pre-restoration (1996) thru current year.
- Classification of 20 randomly selected 0.01-acre "photo-quadrats" per Test Area
- "Percent Coverage" data represents general vegetative response of treatments

Can Physical Treatment Alone Control Phragmites?

- Micro-topographic Modification (MTM)
- Single Mow
- Multiple Mows
- Compared to No Treatment References

Is Microtopography an Effective Phragmites Control Treatment?

Is a Single Mow an Effective Phragmites Control Treatment?

Is Multiple Mowing an Effective Phragmites Control Treatment?

Can Grazing Alone Control *Phragmites?*

Goat Grazing

Are Goats an Effective *Phragmites* Control Treatment?

Can Glyphosate-based Herbicide Treatment Alone Control *Phragmites?*

- Applied at 5.5 pints/acre (6.5 liters/hectare)
- Ground treatments using spray/wick applications
- Primarily Fall Applications (>translocation),
 with some growing season tests
- One-Year, Two-Year, and Multi-Year Applications Evaluated

Is Fall Herbicide Alone an Effective Phragmites Control Treatment?

Is Fall Herbicide Application Followed by Microtopography an Effective Phragmites Control Treatment than Herbicide Alone?

Is Spring Microtopography Followed by Fall Herbicide Application in the Following Year an Effective *Phragmites* Control Treatment?

Is Fall Herbicide Application and Microtopography Coupled with Fall Herbicide Application in the Following Year an Effective Phragmites Control Treatment?

Adaptive Management Conclusions:

- Phragmites coverage significantly reduced within areas receiving glyphosate-based herbicide treatment
- Additional mechanical/biological treatments did not result in measurable *Phragmites* coverage reduction
- No combination of treatments resulted in better control than herbicide alone

Multi-Year Herbicide Treatments

 Initial Applications 1996-1997 followed by annual treatments during 1999 – 2004

Do Successive Applications of Glyphosate-based Herbicide Control *Phragmites* Growth?

Glyphosate-Based Herbicide Dose/Response Analyses

Inputs to Dose/Response Analysis

- Interpretation of Aerial Photography from 1996 2004
- Aerial and Ground Spray Records of Total Volume of Herbicide Applied Annually
- Calculation of Dose (Liters/Hectare) Applied to Areas Each Year

Phragmites Response to Applications of Glyphosate-based Herbicide at Alloway Creek Watershed Wetland Restoration Site Test Areas 43, 44 and 45 1996 - 2004

P. australis

Rodeo Dose (liters/hectare)

Desirable Species

Herbicide Treatment Conclusions:

- Initial treatments with glyphosate-based herbicide significantly reduced *Phragmites* coverage
- Follow-up treatments have maintained higher species diversity
- Scattered Phragmites colonies still present on all areas
- Glyphosate-based herbicide more selective for Phragmites – less collateral damage
- Imazapyr-based herbicide less selective recovery lag in seeing increased biodiversity

650 ha

Questions?

Questions?

